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ALGEBRAIC K-THEORY OF COMPLETED KAC-MOODY

GROUPS

BARTELS, A., LÜCK, W., AND WITZEL, S.

Abstract. We extend results for the K-theory of Hecke algebras of reductive
p-adic groups to completed Kac-Moody groups.

Introduction

A td-group G is a topological group where the unit admits a countable neigh-
borhood basis consisting of compact open subgroups. For a ring R containing Q,
the Hecke algebra H(G;R) is the algebra1 of compactly supported locally constant
functions G → R. In [3] the algebraic K-theory of H(G;R) is studied in the spirit
of the Farrell–Jones conjecture. If R is uniformly regular2 and G is a reductive
p-adic group, then [3, Cor. 1.8] expresses the K-theory of H(G;R) in terms of the
K-theories of H(U ;R) where U varies over the compact open subgroups of G. On
the level of K0 this yields an isomorphism [3, Cor. 1.2]

(1.1) colim
U∈SubCop(G)

K0(H(U ;R))
∼=
−→ K0(H(G;R)).

These results are consequences of the Cvcy-Farrell–Jones conjecture for G, see [3,
Thm. 5.15]. The proof relies on the action of G on its extended Bruhat-Tits build-
ing; this is a CAT(0)-space. More precisely, this action is used in [4, Thm. 1.2]
to construct certain almost equivariant maps and the arguments in [3, Thm. 5.15]
then work for all td-groups admitting such almost equivariant maps.

In the case of discrete groups Γ the Farrell–Jones Conjecture holds for all CAT(0)-
groups, i.e. groups Γ admitting a cocompact isometric proper action on a locally
compact3 finite dimensional4 CAT(0)-space [2]. Similarly, one might ask whether
the Cvcy-Farrell–Jones conjecture [3, Conj. 5.12] holds for td-groups admitting a
cocompact isometric proper smooth5 action on a locally compact finite dimensional
CAT(0)-space. The arguments from [3, 4] do not prove this, because [4] relies on
an additional property [4, Assum. 2.7] of the action of G on the CAT(0)-space.
This property is verified in [4] for the extended Bruhat-Tits building using that it
is a Euclidean building. The purpose of this note is to observe that this property
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also holds for other buildings. This yields the following main result as a direct
consequence of Propositions 2.7 and 4.1; see Section 4 for a discussion of BN -pairs.

Theorem 1.2. If a td-group G admits a BN-pair (B,N) in which B is compact
and open, then G satisfies the Cvcy-Farrell–Jones conjecture.

Theorem 1.2 is a direct consequence of Propositions 2.7 and 4.1. In fact, the
result can be slightly strengthened, see Addendum 4.2.

Corollary 1.3. The K-theoretic statements from [3]6 all generalize from reductive
p-adic groups to td-groups G admitting a BN-pair (B,N) in which B is compact
and open. In particular, (1.1) is an isomorphism for such G.

Proof. As explained in the introduction to [3] these statements are consequences of
the Cvcy-Farrell–Jones conjecture for G. �

In Section 4 we recall examples of groups admitting such BN-pairs. These include
completed Kac–Moody groups as explained Proposition 4.3.
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2. The flow space

Let X be a locally compact CAT(0)-space with an isometric proper cocompact
smooth action of the td group G. In the presence of a cocompact isometric action
local compactness implies completeness and so by Hopf-Rinow [5, Prop. I.3.7] X is
a proper metric space, i.e. closed balls are compact. A generalized geodesic in X
is a continuous map c : R → X for which there exits an open interval U ⊆ R such
that c|U is an isometric embedding and c|R\U is locally constant. Here U may be
unbounded, in particular U = R is allowed. The flow space FS = FS(X) associated
to X is the space of all generalized geodesics c : R → X . A metric on the flow space
is defined by

dFS(c, c
′) =

∫
R

dX(c(t), c′(t))2e−|t|dt.

The flow on FS is the R-action defined by reparametrization: Φτ (c)(t) = c(τ + t).
For c ∈ FS we define Kc as the subgroup of all g ∈ G with gc(t) = c(t) for all t, Vc

as the subgroup of all g ∈ G for which there is τg such that gc(t) = c(t + τg) for
all t. For g ∈ Vc \Kc, τg is unique and we define τc := inf{|τg| | g ∈ Vc \Kc}. If
Vc = Kc, then τc = ∞. If τc < ∞ then we say that c is periodic. We have Kc ⊆ Vc.
With these definitions [4, Assum. 2.7] requires that there is FS0 ⊆ FS such that

(2.1a) G · FS0 = FS(X);

(2.1b) for ℓ > 0 and c0 ∈ FS0 there exists an open neighborhood U of c0 in FS0
such that for all c ∈ U with τc ≤ ℓ we have Vc ⊆ Vc0 .

Assume now that there is a collection A of closed convex subspaces of X satis-
fying

(2.2a) for all A,A′ ∈ A there is g ∈ G with g(A) = A′ and g|A∩A′ = idA∩A′ ;

6These are [3, Cor. 1.2, Cor. 1.8, Cor. 1.18].
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(2.2b) for every A ∈ A the quotient ΓA = {g ∈ G | gA = A}/{g ∈ G | g|A = idA}
is discrete;

(2.2c) for any two points x, y ∈ X there is A ∈ A with x, y ∈ A.

Later X will be a building and A an apartment system. For A ∈ A we let FS(A) ⊆
FS(X) be the subspace of all generalized geodesics in A.

Lemma 2.3. Let A ∈ A. Then G · FS(A) = FS(X), i.e. (2.1a) holds with FS0 :=
FS(A).

Proof. We argue as in the case of a Euclidean building, see [4, Lemma A.1]: Let
c ∈ FS(X) be given. By (2.2c) c(0) ∈ A′ for some A′ ∈ A. By (2.2a) the action of
G on A is transitive. Thus we can assume c(0) ∈ A. By (2.2c) we find An ∈ A that
contains c(±n). By convexity An then contains c([−n, n]). Using (2.2a) we find
gn ∈ G such that gnA = An and gn fixes A ∩ An. Then (gn)n∈N is a sequence in
the compact subgroup of G that fixes c(0) and has therefore an accumulation point
g. As the action of G on X is continuous and smooth, there is for each n a kn such
that gkn

c(t) = gc(t) for all t ∈ [−n, n]. It follows that gA contains the image of c
and so c ∈ g · FS(A). �

Lemma 2.4. Let c0 ∈ FS(A). Then Gc0 ∩ FS(A) is discrete.

Proof. Let g ∈ G with gc0 ∈ FS(A). In particular, c0(R) ⊆ A∩gA. By (2.2a) there
is h ∈ G with hgA = A and h|A∩gA = idA∩gA. Then hgc0 = gc0 and hg ∈ GA.
Thus, by (2.2b), gc0 ∈ GAc0 = ΓAc0. Consequently, Gc0 ∩ FS(A) = ΓAc0.

By assumption proper G y X is proper. By [4, Lemma 2.3] this implies that
G y FS(X) is proper as well. It follows that GA y FS(A) is proper. Thus GA y

FS(A) is proper and has in particular discrete orbits. ThereforeGc0∩FS(A) = ΓAc0
is discrete. �

Lemma 2.5. Let c ∈ FS be periodic. Then there is v ∈ Vc with vc = Φτc(c) and
any such v together with Kc generates Vc.

Proof. This is [4, Lemma 2.8]. �

Lemma 2.6. Let A ∈ A. Then (2.1b) holds with FS0 := FS(A).

Proof. Let ℓ > 0 and c0 ∈ FS(A) be given. We first claim that there is ǫ > 0 with
the following property: if g ∈ G, t ∈ [−ℓ, ℓ], t 6= 0, c ∈ FS(A) with dFS(c, c0) < ǫ
and gc = Φt(c) then there is h ∈ G with hc = c and hgc = Φt(c).

We argue by contradiction. Then there are tn ∈ [−ℓ, ℓ], tn 6= 0, gn ∈ G, cn ∈
FS(A) with gncn = Φtcn and cn → c0, but there is no h ∈ G with hcn = cn
and hgnc = Φtn(c) for any n. The topology of FS(X) induced by its metric is the
topology of uniform convergence on compact sets. In particular dX(cn(0), c(0)) < ǫn
with ǫn → 0. We have dX(c(0), gnc(0)) ≤ dX(c(0), cn(0)) + dX(cn(0), gncn(0)) +
dX(gncn(0), gnc(0)) ≤ 2ǫn + dX(cn(0), cn(tn)) ≤ 2ǫnℓ. Thus the gn(c(0)) vary over
a bounded and therefore compact set in X . Since the action of G on X is proper
this implies that the gn form a relative compact set in G. After a subsequence
we can assume that gn → g for some g ∈ G. After a further subsequence we
can assume tn → t. Now gnc0 → gc0. As G y FS is isometric we also have
gncn → gc0. Thus gc0 = Φt(c0). Using (2.2a) we choose hn ∈ G with A = hngnA
and hn|A∩gnA = idA∩gnA. We have cn = FS(A) and cn = Φ−tn(gncn) ∈ FS(gnA).
In particular hncn = cn and hngncn = hnΦtn(cn) = Φtn(hncn) = Φtn(cn). Then
hn fixes cn(0) and cn(0) → c(0). Thus the hn also form a relatively compact set
in G and after a subsequence we can assume hn → h. Now hngnc0 → hgc0. As
hngnA = A we have hngnc0 ∈ FS for all n. By Lemma 2.4 the hngnc0 form
a discrete set in FS(A). As the hngnc0 also converge they must be eventually
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constant. So after a subsequence we can assume hngnc0 = hgc0 for all n. Also
hngncn = Φtn(cn) implies hgc0 = Φt(c0). Thus hngnc0 = Φt(c0) for all n. To arrive
at the contradiction we aim for we need to show t = tn. As cn is periodic (because
tn 6= 0) it is a bi-infinite geodesic. In particular, dX(cn(Ntn), cn(0)) = Ntn for all
N . Thus Ntn = dX(cn(Ntn), cn(0)) ≤ 2ǫn + d(c0(Nt), c0(0)) ≤ 2ǫn +Nt for all N .
Therefore t ≥ tn, and c is periodic as well. Now conversely, Nt = dX(c(Nt), c(0)) ≤
2ǫn + d(cn(Ntn), cn(0)) ≤ 2ǫn + Ntn, implying tn ≥ t. Altogether, t = tn and so
hngnc0 = Φtn(c0) is the desired contradiction. This proves our first claim.

We observe that in the situation of the first claim the Flat Strip Theorem [5,
p.182] applies. Thus for c ∈ FS(A) with τc ≤ ℓ and dFS(c, c0) < ǫ there is an
isometric embedding R × [0, D] → X whose restriction to R × {0} and R × {D}
are (after reparametrization) c and c0. This implies that c0(R) is contained in the
closure of the convex hull of c0(0)∪ c(R). In particular, if h ∈ G fixes c (in FS(X))
and c0(0) (in X), then it fixes also c0 (in FS(X)).

Our second claim is that there is ǫ > 0 with the following property: if h ∈ G,
c ∈ FS(A) with τc ≤ ℓ, dFS(c, c0) < ǫ, and hc = c, then hc0 = c0 as well.

We argue again by contradiction. Then there are cn ∈ FS, and hn ∈ G with
τcn ≤ ℓ, hncn = cn, cn → c0 but hnc0 6= c0. As τcn ≤ ℓ there are tn ∈ [−ℓ, ℓ], tn 6= 0
and gn ∈ G with gncn = Φtn(cn). Passing to a subsequence we can assume that the
first claim applies to all cn. Arguing as in the first claim we can pass to a further
subsequence and assume that hn → h for some h ∈ G. We have cn(0) → c(0)
and therefore h fixes c0(0). As the action of G on X is smooth the stabilizer of
c0(0) is open in G. Therefore, after passing to a subsequence, hnc0(0) = c0(0).
Now the above observation using the Flat Strip Theorem implies that hn fixes c0,
contradicting our assumption. This proves the second claim.

Choose now ǫ > 0 such that the conclusion of both the first and the second
claim hold. Let c ∈ FS(A) with τc ≤ ℓ and dFS(c, c0) < ǫ. The second claim implies
directly that Kc ⊆ Kc0 ⊆ Vc0 . By Lemma 2.5 there is v ∈ Vc with vc = Φτc(c) such
that v together with Kc generates Vc. So it remains to check v ∈ Vc0 . The first
claim gives us h ∈ Kc with hv ∈ Vc0 . As Kc ⊆ Vc0 this implies v ∈ Vc0 . �

In summary we have the following.

Proposition 2.7. Let G be a td-group. Assume that G admits an isometric proper
cocompact smooth action on a locally compact CAT(0)-space X with a collection of
closed convex subspaces A satisfying (2.2a), (2.2b), and (2.2c).

Then G satisfies the Cvcy-Farrell–Jones conjecture.

Proof. By Lemma 2.3 and 2.6 the action G y X satisfies [4, Assum. 2.7]. Thus [4,
Thm. 1.2] applies in this situation. This is all the input on G needed for the proof
of the Cvcy-Farrell–Jones conjecture for G in [3, Thm. 5.15]. �

3. Strongly transitive actions on buildings

Let X be the Davis–Moussong realization [6][1, Chapter 12] of a building: it is a
complete CAT(0) space. It is also a finite dimensional affine cell complex and has
therefore finite covering dimension. There is a compact model chamber D on which
Aut(X) acts through a finite quotient and an equivariant topological quotient map
τ : X → D. The image τ(x) is the type of x. Images of splittings of τ are (closed)
chambers. An automorphisms of X is said to be type-preserving if its action on
D is trivial. The type-preserving automorphisms form a finite index subgroup of
Aut(X). Let A be an apartment system for X , meaning that

(B0) Every A ∈ A is a subcomplex of X that is isomorphic to the Davis–Moussong
realization of a Coxeter complex.

(B1) For x, y ∈ X there is an A ∈ A such that x, y ∈ A.
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(B2) For A,A′ ∈ A there is an isomorphism ι : A → A′ that restricts to the identity
on A ∩ A′.

Let G be a topological group with an action on X . The type preserving subgroup
G0 of G consists of all g that act type-preservingly on X . We will require that G0

acts strongly transitively on X . This means that G0 acts transitively on pairs (C,A)
where A ∈ A and C is a chamber of A. Equivalently, G0 acts transitively on A and
G0,A = {g ∈ G0 | gA = A} acts transitively on chambers of A. Since chambers are
compact, this means in particular that G0 (and thus G) act cocompactly on X .

Lemma 3.1. Under these assumptions the A are closed convex subspaces satisfying
(2.2a), (2.2b), and (2.2c).

Proof. Observe that every apartment A ∈ A is a geodesic metric space that is
isometrically embedded in X as a closed subspace by construction. Since X , being
CAT(0), is uniquely geodesic, it follows that A is convex.

Let A,A′ ∈ A and let C be a chamber of A. By strong transitivity there exists
a g1 ∈ G0 such that g1A = A′. By (B2) there is an isomorphism ι : A′ → A
restricting to the identity on A∩A′. Let C′ = ι(g1C). Again by strong transitivity

there is a g2 ∈ G0,A with g2C
′ = C, thus ι(g1g2C

′) = C′. Now ι ◦ (g1g2)|
A′

A is a
type-preserving automorphism of A that takes C′ to itself. It follows (see below)

that it is the identity, i.e. g1g2|
A′

A = ι−1. Since ι restricts to the identity on A∩A′,
so does g = g1g2. This shows (2.2a).

The full group of type-preserving automorphisms of any apartment A ∈ A is
the underlying Coxeter group by construction. In particular, an automorphism
of A that is type-preserving and fixes an interior point of a chamber, is trivial.
Write G(A) = {g ∈ G | g|A = idA} for the pointwise stabilizer of A and G0,(A) for
its finite-index subgroup of type-preserving elements. Then Γ0,A = G0,A/G0,(A)

continuously embeds into the Coxeter group and therefore is discrete. As G0,A has
finite index in GA, it follows that GA/G0,(A) and hence also ΓA = GA/G(A) are
discrete. This shows (2.2b).

Finally, (2.2c) is just (B1). �

We now discuss properness of the action. On X we consider the weak topology
with respect to chambers. For ease of reference we record the following.

Lemma 3.2. The following notions are equivalent for X:

(3.2a) X is locally finite in the the polyhedral sense: every face is contained in
finitely many faces;

(3.2b) X is locally finite in the building theoretic sense: every panel is contained
in finitely many chambers;

(3.2c) X is locally compact;

(3.2d) X is proper as a metric space.

Proof. In the Davis–Moussong realization, midpoints of chambers and panels are
always realized, so if X is locally finite, each panel is contained in finitely many
chambers, showing that (3.2a) implies (3.2b). In a locally finite building, subbuild-
ings of spherical type are finite, so the Davis–Moussong realization is locally com-
pact, so (3.2b) implies (3.2c). Since X is complete, geodesic (3.2c) implies (3.2d)
by Hopf–Rinow [5, Prop. I.3.7]. Clearly, a polyhedral complex that is proper with
respect to the weak topology has to be locally finite so (3.2d) implies (3.2a). �

Our present assumptions do not guarantee properness of either X or the action.
The following lemma takes care of this.
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Lemma 3.3. Assume that the stabilizer B in G of a chamber is open and compact.
Then G and X are locally compact and the action of G on X is continuous, smooth
and proper.

See [7] for a detailed discussion of related questions.

Proof. As G0 has finite index in G it suffices to prove the statement for G0 in place
of G.

That G0 is locally compact is immediate. The set of chambers can be identified
with the space G0/B, which is discrete since B is open. Denote the chamber 1·B/B
by C and let P be a panel. Strong transitivity implies that B acts transitively on
the other chambers containing P . Since B is compact and G0/B is discrete, it
follows that there are finitely many of these. Hence by Lemma 3.2 X is locally
finite. Since X is locally finite, on Aut(X) the permutation topology on the set
G0/B of chambers and the compact-open topology for the weak topology on X
coincide so the action is continuous. SinceX is locally finite, all point-stabilizers are
commensurable and since B is compact all point-stabilizers are compact. Since G0

preserves the polyhedral structure on X , it follows that the action is proper. Since
the action is type-preserving, every cell-stabilizer contains a chamber-stabilizer,
which is a conjugate of B by strong transitivity and therefore open; it follows that
the action is smooth. �

In summary we have.

Proposition 3.4. Let X be the Davis–Moussong realization of a building and let
A be a system of apartments. Let a topological group G act on X. Assume that
its type-preserving subgroup G0 acts strongly transitively on X with respect to A
and assume that the stabilizer of a chamber is compact and open. Then X is a
locally compact finite dimensional CAT(0)-space, the action of G on X is isometric,
continuous, smooth, cocompact and proper. Moreover, all A ∈ A are closed convex
and the conditions (2.2a), (2.2b), and (2.2c) are satisfied.

4. Buildings and groups

We now discuss what groups satisfy the conditions of Proposition 3.4. Assume
that a group G acts type-preservingly and strongly transitively on a building, let B
be the stabilizer of a chamber C and N be the setwise stabilizer of an apartment Σ
containing B and assume that G = 〈B,N〉. Then B ∩N is the pointwise stabilizer
of Σ andW = N/(B∩N) is the underlying Coxeter group; let S be the fundamental
reflections taking C to its neighbors in Σ. Then (G,B,N, S) is a Tits system and
(B,N) a BN-pair for G [8, Def. B.24]. Importantly, the converse is also true: if
(B,N) is a BN-pair for G, then G acts strongly transitively on a building with
chamber stabilizer B and N setwise stabilizing an apartment [8, Prop. B.26]. Thus
Proposition 3.4 is equivalent to the following group-theoretic formulation:

Proposition 4.1. Let G be a topological group that admits a BN-pair (B,N) in
which B is compact and open. Then G admits a continuous, isometric, smooth,
proper, cocompact action on a locally compact finite dimensional CAT(0) space with
a collection A of closed convex subspace satisfying the conditions (2.2a), (2.2b),
and (2.2c).

The following is minor generatization of Proposition 4.1.

Addendum 4.2. Let G be a topological group with an open subgroup G0 that admits
a BN-pair (B,N) in which B is compact and open. Assume that G = G0 ·NG(B).
Then the conclusion of Proposition 4.1 remains true for G.



ALGEBRAIC K-THEORY OF COMPLETED KAC-MOODY GROUPS 7

Proof. That G0 admits a BN-pair means that it acts strongly transitively on a thick
building. Its parabolic subgroups are the subgroups of G0 that contain a conjugate
of B and they are self-normalizing [1, Theorem 6.43]. Since the building is locally
finite by Lemmas 3.2 and 3.3 the Davis realization X is the realization of the poset
of subgroups of G0 that are finite index overgroups of a conjugate of B. Thus
the action of G0 on X can be identified with the conjugation action of G0 on the
realization of the poset just described. The condition G = G0 ·NG(B) asserts that
G acts on this poset by conjugation. �

It remains to discuss which groups admit such a BN-pair. There are two main
sources for such groups: Bruhat–Tits theory gives groups for which our results are
known while Kac–Moody theory leads to new results.

The point of departure of both theories are reductive groups over fields. If G is
a connected reductive group defined over a field k there is an associated spherical
Tits building ∆G,k on which G(k) acts strongly transitively.

Bruhat–Tits. If k is a non-Archimedean local field with ring of integers O then
there is additionally an associated locally finite, euclidean Bruhat–Tits building
XG,k on whichG(k) acts and it contains an open subgroupG(k)0 that acts strongly
transitively. The building ∆G,k is naturally identified with the visual boundary of
XG,k, so one may regard XG,k as a refinement of ∆G,k. For every chamber c of
XG,k there is an O-scheme structure G on G such that G(O) is (commensurable
to) the stabilizer of c in G(k) [10, Section 3.4], so in particular the stabilizer B of
c is compact open. Thus G(k) satisfies the hypotheses of Addendum 4.2. These
examples are covered by [4].

Kac–Moody. In a different direction, Kac–Moody theory extends rather than re-
fines ∆G,k: If G is a Tits functor (of which a split semisimple group7 is a special
case) and k is a field, there is an associated twin building (∆+,∆−) on which G(k)
acts strongly transitively. We discuss this following the standard references [9, 1, 8].
An important feature that spherical buildings have is an opposition relation: two
chambers C and D may be opposite in some apartment A which turns out to be
unique. While in non-spherical apartments, chambers cannot be opposite, twin
buildings generalize spherical buildings to arbitrary types. They consist of two
buildings X+ and X− and an opposition relation between them. A twin apartment
consists of an apartment A+ of X+ and an apartment A− of X− such that opposi-
tion establishes a bijective correspondence between the chambers of A+ and of A−.
Again, a pair of opposite chambers is contained in a unique twin apartment. Thus
a strongly transitive action may equivalently be defined as an action that is tran-
sitive on pairs of opposite chambers. With these notions in place, the basic theory
of twin buildings extends that of spherical buildings with minor modifications (the
structure theory is richer, of course).

Just as strongly transitive actions of groups on buildings correspond to BN-pairs
(as above), strongly transitive actions of groups on twin buildings correspond to
twin BN-pairs : subgroups B+, B−, and N which end up being the stabilizers of
opposite chambers ofX+ and ofX− and the setwise stabilizer of the twin apartment
containing the two.

If G is a Tits functor [8, Def 7.47] and k is a field, the group G = G(k) admits a
twin-BN-pair [8, Thm. 7.69, Cor. 7.70] and thus acts strongly transitively on a twin
building (X+, X−). The buildings X+ and X− are locally finite (in the polyhedral

7Tits extends Chevalley–Demazure group schemes which explains the restriction to split
semisimple groups. Recall that a reductive group is an almost-direct product of a semisimple
group and a central torus, so the restriction to semisimple groups is harmless. The restriction to
split groups is substantial, though note that quasi-split groups are considered in [9]
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sense when taking the Davis–Moussong realization) if k is finite. The group G(k) is
then countable discrete. However, (unless G is of spherical type so that X+ is finite
and G is a finite group of Lie type) Aut(X+) is non-discrete and so one may consider
the closure of G(k) in Aut(X+) to obtain a non-discrete locally compact group. In
fact, besides this geometric completion there are various alternative completions
that all lead to groups satisfying the hypotheses of Proposition 4.1:

Proposition 4.3. Let G be a Tits functor, let k be a finite field, and let G = G(k)
be the resulting Kac–Moody group. Let Ḡ be either the geometric, representation
theoretic, the algebraic, or the scheme theoretic completion of G.

Then Ḡ admits a BN-pair with B compact open. In particular Ḡ satisfies the
satisfies the Cvcy-Farrell–Jones conjecture.

Proof. The group Ḡ admits a BN-pair with B compact open. This is shown in [8] in
Theorem 8.16 and Proposition 8.17 for the geometric completion, in Theorem 8.23
and Proposition 8.24 for the representation theoretic completion, in Theorem 8.33
and Proposition 8.34 for the algebraic completion, and in Theorem 8.84 and Propo-
sition 8.85 for the scheme theoretic completion. Finally apply Theorem 1.2. �
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