Survey on L^{2}-torsion and its (future) applications

Wolfgang Lück

Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de
http://www.him.uni-bonn.de/lueck/

Bonn, May 2024

Motivation

- L²-Betti numbers have many applications to algebra, geometry, and group theory, often as obstructions, for instance against fibering.
- If they all vanish, a secondary invariant, the L^{2}-torsion is defined. It is much more sophisticated and richer than the notion of an L^{2}-Betti number, but also harder to access.
- We want to discuss some open problems and potential applications of L^{2}-torsion without going into technical details.
- Hopefully these will be picked up as interesting research projects by some mathematicians.
- We are not planning to go over all the slides in the talk.
- The slides can be downloaded from my homepage.

Topics

- Basics definitions
- Basic properties of L^{2}-torsion
- Knots
- An invariant of group automorphisms
- Twisting with finite dimensional representations
- The Thurston norm and the degree of the ϕ-twisted L^{2}-torsion function
- Homological growth and L^{2}-torsion
- Simplicial volume and L^{2}-invariants
- L^{2}-torsion and measure equivalence
- (Generalized) Lehmer's problem
- References

Basic definitions

- Let G be a group and Y be a G-space. Define

$$
b_{n}^{(2)}(Y ; \mathcal{N}(G))=\operatorname{dim}_{\mathcal{N}(G)}\left(H_{n}\left(\mathcal{N}(G) \otimes_{\mathbb{Z} G} C_{*}(Y)\right)\right) \quad \in \mathbb{R}^{\geq 0} \amalg\{\infty\}
$$ for the dimension function $\operatorname{dim}_{\mathcal{N}(G)}$ defined for arbitrary $\mathcal{N}(G)$-modules.

- For a group G define

$$
b_{n}^{(2)}(G)=b_{n}^{(2)}(E G ; \mathcal{N}(G))=b_{n}^{(2)}(\underline{E} G ; \mathcal{N}(G)) \quad \in \mathbb{R}^{\geq 0} \amalg\{\infty\}
$$

- Let X be a connected finite $C W$-complex with universal covering $\widetilde{X} \rightarrow X$ and fundamental group π. Define

$$
b_{n}^{(2)}(\widetilde{X})=b_{n}^{(2)}(\widetilde{X} ; \mathcal{N}(\pi))=\operatorname{dim}_{\mathcal{N}(G)}\left(\operatorname{ker}\left(\mathrm{id}_{\mathcal{N}(G)} \otimes_{\mathbb{Z} \pi} \widetilde{\Delta}_{n}\right)\right) \quad \in \mathbb{R}^{\geq 0}
$$

for $\widetilde{\Delta}_{n}: C_{n}(\widetilde{X}) \rightarrow C_{n}(\widetilde{X})$ the combinatorial Laplacian over $\mathbb{Z} \pi$.

- If M is a closed Riemannian manifold, the L^{2}-Betti numbers can be defined analytically in terms of the heat kernel on \widetilde{M}

$$
b_{n}^{(2)}(\widetilde{M})=\lim _{t \rightarrow \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}\left(e^{-t \widetilde{\Delta}_{n}}(\tilde{x}, \tilde{x})\right) d \mathrm{vol}_{\tilde{M}}
$$

- A connected finite $C W$-complex X is called L^{2}-acyclic if $b_{n}^{(2)}(\widetilde{X})=0$ holds for all $n \geq 0$.
- In this case we can define a secondary invariant as follows, where we will ignore in the sequel discussions about det ≥ 1 class since this is satisfied in all cases of interest.
- Let X be connected finite CW-complex X which is L^{2}-acyclic. Define its L^{2}-torsion

$$
\rho^{(2)}(\widetilde{X})=\sum_{n \geq 0}(-1)^{n} \cdot n \cdot \ln \left(\operatorname{det}_{\mathcal{N}(\pi)}\left(\mathrm{id}_{\mathcal{N}(\pi)} \otimes_{\mathbb{Z} \pi} \widetilde{\Delta}_{n}\right)\right) \quad \in \mathbb{R}
$$

where $\operatorname{det}_{\mathcal{N}(\pi)}$ is the Fuglede-Kadison determinant.

- If M is a closed Riemannian manifold which is L^{2}-acyclic, it has an analytic expression in terms of the heat kernel on \widetilde{M}, namely for any choice of $\epsilon>0$ we have

$$
\begin{aligned}
& \rho^{(2)}(\widetilde{M}):=\frac{1}{2} \cdot \sum_{n \geq 0}(-1)^{n} \cdot n \cdot\left(\left.\frac{d}{d s} \frac{1}{\Gamma(s)} \int_{0}^{\epsilon} t^{s-1} \cdot \theta_{n}(t) d t\right|_{s=0}\right. \\
&\left.+\int_{\epsilon}^{\infty} t^{-1} \cdot \theta_{n}(t) d t\right)
\end{aligned}
$$

for $\theta_{n}(t)=\int_{\mathcal{F}} \operatorname{tr}\left(e^{-t \widetilde{\Delta}_{n}}(\tilde{X}, \tilde{x})\right) d \operatorname{vol}_{\tilde{M}}$.

- The upshot of the discussion above is that whenever a connected finite $C W$-complex X is L^{2}-acyclic, then a secondary invariant, its L^{2}-torsion $\rho(\widetilde{X}) \in \mathbb{R}$, can be considered.
- The relation of the L^{2}-torsion to L^{2}-Betti numbers can be viewed as the L^{2}-analogue of the relation of the classical Reidemeister torsion to classical Betti numbers.
- The L^{2}-torsion is the L^{2}-analogue of the classical Ray-Singer torsion which is the analytic counterpart of Reidemeister torsion.
- In the sequel we tacitly assume at a few places that the K-theoretic Farrell-Jones Conjecture holds which is known to be true in all cases of interest.

Basic properties of L^{2}-torsion

- Homotopy invariance

If X and Y are homotopy equivalent and X is L^{2}-acyclic, then Y is L^{2}-acyclic and we get

$$
\rho^{(2)}(\widetilde{X})=\rho^{(2)}(\widetilde{Y})
$$

- Sum formula

If $X=X_{1} \cup X_{2}$ and $X_{0}=X_{1} \cap X_{2}, X_{i}$ is L^{2}-acyclic for $i=0,1,2$, and the inclusions $X_{i} \rightarrow X$ are π_{1}-injective, then X is L^{2}-acyclic and we get

$$
\rho^{(2)}(\widetilde{X})=\rho^{(2)}\left(\widetilde{X_{1}}\right)+\rho^{(2)}\left(\widetilde{X_{2}}\right)-\rho^{(2)}\left(\widetilde{X_{0}}\right)
$$

- Product formula

If X is L^{2}-acyclic, then $X \times Y$ is L^{2}-acyclic and we get

$$
\rho^{(2)}(\widetilde{X \times Y})=\chi(Y) \cdot \rho^{(2)}(\widetilde{Y})
$$

- Fibration formula

Let $F \rightarrow E \rightarrow B$ be a fibration of connected finite $C W$-complexes such that F is L^{2}-acyclic and the inclusion $F \rightarrow E$ is π_{1}-injective.
Then E is L^{2}-acyclic and we get

$$
\rho^{(2)}(\widetilde{E})=\chi(B) \cdot \rho^{(2)}(\widetilde{F})
$$

- Poincaré duality

If M is a closed manifold which is L^{2}-acyclic and of even dimension, then

$$
\rho^{(2)}(\widetilde{M})=0
$$

- Multiplicativity

Let $Y \rightarrow X$ be a finite covering with d-sheets. Suppose that X or Y is L^{2}-acyclic. Then both are L^{2}-acyclic and

$$
\rho^{(2)}(\widetilde{Y})=d \cdot \rho^{(2)}(\widetilde{X})
$$

- Hyperbolic manifolds

If M is a closed hyperbolic manifold of odd dimension $2 k+1$, then M is L^{2}-acyclic and there is a rational number $r_{k}>0$ (depending only on k) satisfying

$$
\rho^{(2)}(\widetilde{M})=(-1)^{k} \cdot \pi^{-k} \cdot r_{k} \cdot \operatorname{Vol}(M) .
$$

(There are similar formulas for locally symmetric spaces of non-compact type.)

- 3-manifolds

Let M be a compact connected irreducible 3-manifold with infinite π whose boundary is empty or a union of incompressible tori. Let $M_{1}, M_{2}, \ldots, M_{r}$ be the hyperbolic pieces in its JSJ-decomposition. Define $\operatorname{Vol}(M)$ to be $\sum_{i=1}^{r} \operatorname{Vol}\left(M_{i}\right)$.
Then M is L^{2}-acyclic and

$$
\rho^{(2)}(\widetilde{M})=\frac{-1}{6 \pi} \cdot \operatorname{Vol}(M) .
$$

Knots

Theorem

Let $K \subseteq S^{3}$ be a knot and $M(K)$ be its knot complement which is the complement of an open regular neighborhood of K.
(1) $M(K)$ is L^{2}-acyclic and we can define the L^{2}-torsion
$\rho^{(2)}(K):=\rho^{(2)}(\widetilde{M(K)})$.
(2) We have $\rho^{(2)}(K)=0$ if and only if K is obtained from the trivial knot by applying a finite number of times the operation "connected sum" and "cabling".
(0) A knot is trivial if and only if both its L^{2}-torsion $\rho^{(2)}(K)$ and its Alexander polynomial $\Delta(K)$ are trivial.

An invariant of group automorphisms

Definition

Let G be a group with a finite model for $B G$. Let $f: G \stackrel{\cong}{\rightrightarrows} G$ be a group automorphism. Let $T_{B f}$ be the mapping torus of $B f: B G \rightarrow B G$. Then $T_{B f}$ is L^{2}-acyclic and we can define the L^{2}-torsion of f

$$
\rho^{(2)}(f):=\rho^{(2)}\left(\widetilde{T}_{f}\right) \quad \in \mathbb{R}
$$

- One can generalize the construction above to the case where there is a finite model for $\underline{E} G$.
- Next we collect the main properties of $\rho^{(2)}(f)$.
- $\rho^{(2)}(f)$ depends only on the class of f in $\operatorname{Out}(G)$.
- Amalgamation formula

$$
\rho^{(2)}\left(f_{1} *_{f_{0}} f_{2}\right)=\rho^{(2)}\left(f_{1}\right)+\rho^{(2)}\left(f_{2}\right)-\rho^{(2)}\left(f_{0}\right)
$$

- Trace property

Let $u: G \stackrel{\cong}{\cong} H$ and $v: H \xrightarrow{\cong} G$ group automorphisms. Then

$$
\rho^{(2)}(u \circ v)=\rho^{(2)}(v \circ u) .
$$

In particular $\rho^{(2)}(f)$ depends only on the conjugacy class of f in Out(G).

- Additivity

If the following diagram commutes and has exact sequences as rows and automorphisms as vertical arrows

then

$$
\rho^{(2)}\left(f_{1}\right)=\chi\left(B G_{2}\right) \cdot \rho^{(2)}\left(f_{0}\right) .
$$

- Multiplicativity under finite index subgroups

If $f: G \stackrel{\cong}{\cong} G$ is an automorphism of G and $H \subseteq G$ is a subgroup of finite index with $f(H)=H$, then

$$
\rho^{(2)}\left(\left.f\right|_{H}\right)=[G: H] \cdot \rho^{(2)}(f) .
$$

- Multiplicativity under composition

For $m \geq 1$ we get

$$
\rho^{(2)}\left(f^{m}\right)=m \cdot \rho^{(2)}(f)
$$

and we have

$$
\rho^{(2)}\left(f^{-1}\right)=\rho^{(2)}(f)
$$

- If $B G$ is L^{2}-acyclic, then $\rho^{(2)}(f)=0$.
- If there is an automorphism a: $S \rightarrow S$ of a compact orientable surface different from S^{2} and D^{2}, then its mapping torus T_{f} is a connected compact irreducible manifold of dimension 3 whose boundary is empty or a union of incompressible tori, and we get

$$
\rho^{(2)}\left(\pi_{1}(a)\right)=-\frac{1}{6 \pi} \cdot \operatorname{Vol}\left(T_{a}\right)
$$

- One should investigate $\rho^{(2)}(f)$ in particular for elements $f \in \operatorname{Out}\left(F_{r}\right)$ for the free group F_{r} of rank r.
- It is an interesting question whether $\rho(f)$ determines the conjugacy class of f in $\operatorname{Out}\left(F_{r}\right)$ up to finite ambiguity provided that f has exponential growth
- Next we describe a recipe how to compute $\rho^{(2)}(f)$ for $f \in \operatorname{Out}\left(F_{r}\right)$.
- Write $G=F_{r} \rtimes_{f} \mathbb{Z}$ for the semi-direct product associated to f. Let $t \in \mathbb{Z}$ be a generator and denote the corresponding element in G also by t.
- Define a (r, r)-matrix A over $\mathbb{Z}\left[F_{r}\right]$ by

$$
A=\left(\frac{\partial}{\partial s_{j}} f\left(s_{i}\right)\right)_{1 \leq i, j \leq r}
$$

where $\frac{\partial}{\partial s_{j}}$ denotes the Fox derivative.

- Choose a large enough real number $K>0$.
- Denote by

$$
\operatorname{tr}_{\mathbb{Z} G}: \mathbb{Z} G \rightarrow \mathbb{Z}, \quad \sum_{g \in G} \lambda_{g} \cdot g \mapsto \lambda_{e}
$$

the standard trace on $\mathbb{Z} G$.

- Define the so called characteristic sequence for $p \geq 0$

$$
c(A, K)_{p}=\operatorname{tr}_{\mathbb{Z} G}\left(\left(1-K^{-2} \cdot(1-t A)\left(1-A^{*} t^{-1}\right)\right)^{p}\right)
$$

- In the setting above the sequence $c(A, K)_{p}$ is a monotone decreasing sequence of non-negative real numbers, and the L^{2}-torsion of f satisfies

$$
\rho^{(2)}(f)=-r \cdot \ln (K)+\frac{1}{2} \cdot \sum_{p=1}^{\infty} \frac{1}{p} \cdot c(A, K)_{p} \leq 0
$$

- The convergence of the infinite sum above is exponential.
- The complexity of the computation of $\rho^{(2)}(f)$ has been analyzed by Löh-Uschold [20].

Twisting with finite dimensional representations

- One can twist L^{2}-Betti numbers $b_{n}^{(2)}(\tilde{X})$ with a finite-dimensional real representation V and obtains the V-twisted L^{2}-Betti numbers $b_{n}^{(2)}(\widetilde{X} ; V)$.
- If V is orthogonal, then it is easy to check

$$
b_{n}^{(2)}(\widetilde{X} ; V)=\operatorname{dim}_{\mathbb{R}}(V) \cdot b_{n}^{(2)}(\widetilde{X}) .
$$

- There is the conjecture formulated as a question in Lück [25, Question 0.1] that this holds for all finite-dimensional real representations V.
- Boschheidgen-Jaikin-Zapirain [3, Theorem 1.1] have proved it if π is sofic.
- Therefore we will tacitly assume this conjecture to be true in the sequel.
- In particular $b_{n}^{(2)}(\tilde{X} ; V)$ vanishes for all $n \geq 0$ if X is L^{2}-acyclic.
- This raises the question whether, for a connected finite $C W$-complex X which is L^{2}-acyclic, we can twist L^{2}-torsion $\rho^{(2)}(\widetilde{X})$ with a finite-dimensional real representation V and obtain the V-twisted L^{2}-torsion $\rho^{(2)}(\widetilde{X} ; V)$.
- This is easy if V is orthogonal but the result is not interesting since it will satisfy

$$
\rho^{(2)}(\widetilde{X} ; V)=\operatorname{dim}_{\mathbb{R}}(V) \cdot \rho^{(2)}(\widetilde{X})
$$

- If V is any finite-dimensional real representation V, the proof that $\rho^{(2)}(\widetilde{X} ; V)$ is well-defined is much harder.
- It has been carried out by Lück [25, Theorem 7.7] provided that V is a $\mathbb{Q} \pi$-module which is finitely generated as \mathbb{Q}-module or if the representation V considered as a homomorphisms $\rho_{V}: \pi \rightarrow G L_{d}(\mathbb{R})$ factorizes through \mathbb{Z}^{k} for $k \geq 0$.
- Let X be a finite connected $C W$-complex with fundamental group π which is L^{2}-acyclic. Let $\operatorname{Rep}_{\mathbb{R}}(\pi, d)$ be the real algebraic variety of d-dimensional real representations, i.e., of group homomorphisms $\pi \rightarrow G L_{d}(\mathbb{R})$.

Conjecture

The function

$$
\rho_{X}^{(2)}: \operatorname{Rep}_{\mathbb{R}}(\pi, d) \rightarrow \mathbb{R}
$$

is well-defined, continuous, and even smooth on manifold strata.

- We expect that $\rho_{X}^{(2)}$ carries interesting information, in particular when X is a compact connected irreducible 3-manifold M with infinite π whose boundary is empty or a union of incompressible tori.
- Question: Can we recover the Casson invariant of an integral homology 3-sphere N from $\rho_{N}^{(2)}$?
- Partial results show that $\rho_{X}^{(2)}$ seems to carry a lot of information.
- We know already that $\rho_{M}^{(2)}$ evaluated at the trivial d-dimensional representation is $-\frac{d}{6 \pi} \cdot \operatorname{Vol}(M)$ for such M.
- If M is above, one can calculate $\rho_{M}^{(2)}(V)$ in terms of characteristic sequences as indicated above for group automorphisms, where the relevant matrices A can be read off from π and the representation $\pi \rightarrow G L_{d}(\mathbb{R})$.
- Next we explain the relation between $\rho_{M}^{(2)}$ and the Thurston norm, where M is a compact connected irreducible orientable 3-manifold M with infinite π whose boundary is empty or a union of incompressible tori. See $[7,8,9,10,18,19,25]$.

The Thurston norm and the degree of the ϕ-twisted L^{2}-torsion function

- Consider an element $\phi \in H^{1}(M ; \mathbb{Q})=\operatorname{hom}(\pi, \mathbb{Q})$.
- We obtain for every $t \in(0, \infty)$ a 1-dimensional real representation $\mathbb{R}_{\phi, t}$ whose underlying real vector space is \mathbb{R} and on which $w \in \pi$ acts by multiplication with $t^{\phi(w)}$.
- We obtain the ϕ-twisted L^{2}-torsion function

$$
\rho^{(2)}(M ; \phi):(0, \infty) \rightarrow \mathbb{R}, \quad t \mapsto \rho^{(2)}\left(\widetilde{M} ; \mathbb{R}_{\phi, t}\right)
$$

- Actually this function depends on a choice of a Spin ${ }^{c}$-structure, but we will ignore this point since a different choice changes the $\rho_{\phi}^{(2)}$ by adding a function of the shape $E \cdot \ln (t)$.
- It turns out to be well-defined and continuous.
- There exist constants $C \geq 0$ and $D \geq 0$ such that we get for $0<t \leq 1$

$$
C \cdot \ln (t)-D \leq \rho^{(2)}(M ; \phi)(t) \leq-C \cdot \ln (t)+D
$$

and for $t \geq 1$

$$
-C \cdot \ln (t)-D \leq \rho^{(2)}(M ; \phi)(t) \leq C \cdot \ln (t)+D
$$

- Define the degree of $\bar{\rho}^{(2)}(M ; \phi)$ to be the non-negative real number

$$
\operatorname{deg}\left(\rho^{(2)}(M ; \phi)\right):=\limsup _{t \rightarrow \infty} \frac{\rho(t)}{\ln (t)}-\liminf _{t \rightarrow 0} \frac{\rho(t)}{\ln (t)}
$$

- Recall the definition of Thurston [30] of the so-called Thurston norm of $\phi \in H^{1}(M ; \mathbb{Z})$
$x_{M}(\phi):=\min \left\{\chi_{-}(F) \mid F \subset M\right.$ properly embedded surface dual to $\left.\phi\right\}$, where, given a surface F with connected components $F_{1}, F_{2}, \ldots, F_{k}$, we define

$$
\chi-(F):=\sum_{i=1}^{k} \max \left\{-\chi\left(F_{i}\right), 0\right\} .
$$

- Thurston [30] showed that this defines a seminorm on $H^{1}(M ; \mathbb{Z})$ which can be extended to a seminorm on $H^{1}(M ; \mathbb{R})$.
- In particular we get for $r \in \mathbb{R}$ and $\phi \in H^{1}(M ; \mathbb{R})$

$$
x_{M}(r \cdot \phi)=|r| \cdot x_{M}(\phi)
$$

- If $K \subseteq S^{3}$ is a knot and we take M as its knot complement, then the Thurston norm of the element ϕ_{K} given by the knot is $2 \cdot \operatorname{genus}(K)-1$.
- If $p: \bar{M} \rightarrow M$ is a finite covering with n sheets, then Gabai [11, Corollary 6.13] showed that

$$
x_{\bar{M}}\left(p^{*} \phi\right)=n \cdot x_{M}(\phi)
$$

- If $F \rightarrow M \xrightarrow{p} S^{1}$ is a fiber bundle for a 3-manifold M and compact surface F, and $\phi \in H^{1}(M ; \mathbb{Z})$ is given by the homomorphism $H_{1}(p): H_{1}(M) \rightarrow H_{1}\left(S^{1}\right)=\mathbb{Z}$, then by Thurston [30, Section 3] we have

$$
x_{M}(\phi)= \begin{cases}-\chi(F), & \text { if } \chi(F) \leq 0 \\ 0, & \text { if } \chi(F) \geq 0\end{cases}
$$

Theorem (The Thurston norm and the degree of the ϕ-twisted L^{2}-torsion function)
We have

$$
x_{M}(\phi)=\operatorname{deg}\left(\rho^{(2)}(M ; \phi) \rho^{(2)}(M ; \phi)\right)
$$

- Actually, Thurston defines the so-called Thurston polytope which is essentially the unit ball with respect to the Thurston norm and carries information about the question which ϕ in $H^{1}(M ; \mathbb{Z})$ are fibered.
- The Thurston polytope can be read of the universal L^{2}-torsion defined by Friedl-Lück [7] using [18] which actually determines also $\rho_{X}^{(2)}$ and hence $\rho^{(2)}(M ; \phi)$.

Homological growth and L^{2}-torsion

- A normal chain $\left\{G_{i}\right\}$ for the group G is a descending chain of subgroups

$$
\begin{equation*}
G=G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \cdots \tag{1}
\end{equation*}
$$

such that G_{i} is normal in G and $\bigcap_{i \geq 0} G_{i}=\{1\}$.

- A normal chain is a finite index normal chain, if and only if [$G: G_{i}$] is finite for each i.
- If $G=\pi_{1}(M)$, them $M[i] \rightarrow M$ is the G / G_{i}-covering associated to $G_{i} \subseteq G$.
- The following conjecture is taken from Lück [23, Conjecture 1.12 (2)]. For locally symmetric spaces it reduces to the conjecture of Bergeron and Venkatesh [2, Conjecture 1.3].

Conjecture (Homological torsion growth and L^{2}-torsion)

Let M be an aspherical closed manifold and

$$
\pi_{1}(M)=G=G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \cdots
$$

be any finite index normal chain.
Then we get for any natural number n with $2 n+1 \neq \operatorname{dim}(M)$

$$
\lim _{i \rightarrow \infty} \frac{\ln \left(\left|\operatorname{tors}\left(H_{n}(M[i] ; \mathbb{Z})\right)\right|\right)}{\left[G: G_{i}\right]}=0
$$

If the dimension $\operatorname{dim}(M)=2 m+1$ is odd, then \widetilde{M} is det- L^{2}-acyclic and we get

$$
\lim _{i \rightarrow \infty} \frac{\ln \left(\left|\operatorname{tors}\left(H_{m}(M[i] ; \mathbb{Z})\right)\right|\right)}{\left[G: G_{i}\right]}=(-1)^{m} \cdot \rho^{(2)}(\widetilde{M})
$$

Theorem (Lück [23])

Let M be an aspherical closed manifold with fundamental group $G=\pi_{1}(M)$. Suppose that M carries a non-trivial S^{1}-action or suppose that G contains a non-trivial elementary amenable normal subgroup. Then M is L^{2}-acyclic and we get for all $n \geq 0$ and any finite index normal chain $\left(G_{i}\right)_{i \geq 0}$

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \frac{\ln \left(\left|\operatorname{tors}\left(H_{n}(M[i])\right)\right|\right)}{\left[G: G_{i}\right]} & =0 ; \\
\rho^{(2)}(\tilde{M}) & =0 .
\end{aligned}
$$

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$
b_{n}^{(2)}(\widetilde{M})=0 \quad \text { if } 2 n \neq \operatorname{dim}(M)
$$

If M is a closed Riemannian manifold with negative sectional curvature, then

$$
b_{n}^{(2)}(\widetilde{M}) \begin{cases}=0 & \text { if } 2 n \neq \operatorname{dim}(M) \\ >0 & \text { if } 2 n=\operatorname{dim}(M)\end{cases}
$$

- The Singer Conjecture and the Conjecture on Homological torsion growth and L^{2}-torsion cannot both be true in general. Namely, if both are true, then the so called \mathbb{F}_{p}-Singer Conjecture would be true as pointed out by Avramidi-Okun-Schreve [1]. Moreover, the \mathbb{F}_{p}-Singer Conjecture is not true in general, see [1, Theorem 4].
- There is no contradiction if we additionally assume that $\operatorname{dim}(M)=3$, in which case the Singer Conjecture is known to be true, see Lott-Lück [21].
- Or one modifies the conjecture about homological torsion growth and L^{2}-torsion as follows.

Conjecture (Homological torsion growth and L^{2}-torsion, modified)

Let M be an aspherical closed manifold of odd dimension $\operatorname{dim}(M)=2 m+1$ which is det-L2 -acyclic. Let $\left(G_{i}\right)_{i \geq 0}$ be any finite index normal chain.

Then

$$
\lim _{i \rightarrow \infty}\left(\sum_{n=0}^{2 m+1}(-1)^{n} \cdot \frac{\ln \left(\left|\operatorname{tors}\left(H_{n}(M[i] ; \mathbb{Z})\right)\right|\right)}{\left[G: G_{i}\right]}\right)=\rho^{(2)}(\widetilde{M})
$$

- The Conjecture on Homological torsion growth and L^{2}-torsion is related to the following conjecture taken from Lück [24, Conjecture 14.1 on page 308].

Conjecture (Approximation Conjecture for Fuglede-Kadison determinants)

A group G satisfies the Approximation Conjecture for Fuglede-Kadison determinants if for any normal chain $\left\{G_{i}\right\}$ and any matrix $A \in M_{r, s}(\mathbb{Q} G)$ we get for the Fuglede-Kadison determinant

$$
\begin{aligned}
\operatorname{det}_{\mathcal{N}(G)}\left(r_{A}^{(2)}\right. & \left.: L^{2}(G)^{r} \rightarrow L^{2}(G)^{s}\right) \\
& =\lim _{i \in 1} \operatorname{det}_{\mathcal{N}\left(G / G_{i}\right)}\left(r_{A[7]}^{(2)}: L^{2}\left(G / G_{i}\right)^{r} \rightarrow L^{2}\left(G / G_{i}\right)^{s}\right) .
\end{aligned}
$$

- The main issue here are uniform estimates about the spectrum of the n-th Laplace operators on $M[i]$ which are independent of i.
- We are more optimistic about the conjecture above than about the conjecture on homological torsion growth and L^{2}-torsion since for the latter conjecture also a certain conjecture about regulators come in.
- Let M be a compact connected irreducible 3-manifold with infinite π whose boundary is empty or a union of incompressible tori. Then the conjecture above predicts for any finite index normal chain $\left(G_{i}\right)_{i \geq 0}$

$$
\lim _{i \rightarrow \infty} \frac{\ln \left(\left|\operatorname{tors}\left(H_{1}\left(G_{i}\right)\right)\right|\right)}{\left[G: G_{i}\right]}=\frac{1}{6 \pi} \cdot \operatorname{vol}(M) .
$$

Since the volume is always positive, the equation above implies that $\left|\operatorname{tors}\left(H_{1}\left(G_{i}\right)\right)\right|$ grows exponentially in $\left[G: G_{i}\right]$.

- In particular this would allow to read off the volume from the profinite completion of $\pi_{1}(M)$, see Kammeyer [16].

Simplicial volume and L^{2}-invariants

- The simplicial volume of a manifold is a topological variant of the (Riemannian) volume which agrees with it for hyperbolic manifolds up to a dimension constant and was introduced by Gromov [14].

Definition (Simplicial volume)

Let M be a closed connected orientable manifold of dimension n. Define its simplicial volume to be the non-negative real number

$$
\|M\|:=\|j([M])\|_{1} \quad \in \mathbb{R}^{\geq 0}
$$

for any choice of fundamental class $[M] \in H_{n}^{\text {sing }}(M)$ and
$j: H_{n}^{\text {sing }}(M) \rightarrow H_{n}^{\text {sing }}(M ; \mathbb{R})$ the change of coefficients map associated to the inclusion $\mathbb{Z} \rightarrow \mathbb{R}$, where $\|j([M])\|_{1}$ is the infimum over the L^{1}-norms of any cycle in the singular chain complex $C_{*}^{\text {sing }}(M ; \mathbb{R})$ representing $j([M])$.

Conjecture (Simplicial volume and L^{2}-invariants)

Let M be an aspherical closed orientable manifold of dimension ≥ 1. Suppose that its simplicial volume $\|M\|$ vanishes. Then:

$$
\begin{aligned}
b_{n}^{(2)}(\widetilde{M}) & =0 \quad \text { for } n \geq 0 ; \\
\rho^{(2)}(\widetilde{M}) & =0 .
\end{aligned}
$$

- Gromov first asked in [15, Section 8A on page 232] whether under the conditions in the conjecture above the Euler characteristic of M vanishes, and notes that in all available examples even the L^{2}-Betti numbers of M vanish. The part about L^{2}-torsion appears in Lück [22, Conjecture 3.2].

L^{2}-torsion and measure equivalence

- Gaboriau [13] introduced L^{2}-Betti numbers of measured equivalence relations and proved that two measure equivalent countable groups have proportional L^{2}-Betti numbers. This notion turned out to have many important applications in recent years, most notably through the work of Popa [28].
- The notion of measure equivalence was introduced by Gromov [15, 0.5.E].

Definition (Measure equivalence)

Two countable groups G and H are called measure equivalent with index $c=I(G, H)>0$ if there exists a non-trivial standard measure space (Ω, μ) on which $G \times H$ acts such that the restricted actions of $G=G \times\{1\}$ and $H=\{1\} \times H$ have measurable fundamental domains $X \subset \Omega$ and $Y \subset \Omega$, with $\mu(X)<\infty, \mu(Y)<\infty$, and $c=\mu(X) / \mu(Y)$. The space (Ω, μ) is called a measure coupling between G and H (of index c).

- The following conjecture is taken from Lueck-Sauer-Wegner [27, Conjecture 1.2].

Conjecture (L^{2}-torsion and measure equivalence)

Let G and H be two admissible groups, which are measure equivalent with index $I(G, H)>0$. Then

$$
\rho^{(2)}(G)=I(G, H) \cdot \rho^{(2)}(H) .
$$

- Due to Gaboriau [13], the vanishing of the nth L^{2}-Betti number $b_{n}^{(2)}(G)$ is an invariant of the measure equivalence class of a countable group G. If all L^{2}-Betti numbers vanish and G is an admissible group, then the vanishing of the L^{2}-torsion is a secondary invariant of the measure equivalence class of a countable group G provided that the conjecture above holds.
- Evidence for the conjecture above comes from Lueck-Sauer-Wegner [27, Conjecture 1.10] which says that the conjecture above is true if we replace measure equivalence by the stronger notion of uniform measure equivalence, see [27, Definition 1.3], and assume that G satisfies the Measure Theoretic Determinant Conjecture, see [27, Conjecture 1.7].

(Generalized) Lehmer's problem

- Here is a very interesting aside concerning Fuglede-Kadison determinants and Mahler measures.

Definition (Mahler measure)

Let $p(z) \in \mathbb{C}[\mathbb{Z}]=\mathbb{C}\left[z, z^{-1}\right]$ be a non-trivial element. Write it as $p(z)=c \cdot z^{k} \cdot \prod_{i=1}^{r}\left(z-a_{i}\right)$ for an integer $r \geq 0$, non-zero complex numbers c, a_{1}, \ldots, a_{r} and an integer k. Define its Mahler measure

$$
M(p)=|c| \cdot \prod_{\substack{i=1,2, \ldots, r \\\left|a_{i}\right|>1}}\left|a_{i}\right|
$$

- The following famous and open problem goes back to a question of Lehmer [17].

Problem (Lehmer's Problem)

Does there exist a constant $\Lambda>1$ such that for all non-trivial elements $p(z) \in \mathbb{Z}[\mathbb{Z}]=\mathbb{Z}\left[z, z^{-1}\right]$ with $M(p) \neq 1$ we have

$$
M(p) \geq \Lambda ?
$$

- There is even a candidate for which the minimal Mahler measure is attained, namely, Lehmer's polynomial

$$
L(z):=z^{10}+z^{9}-z^{7}-z^{6}-z^{5}-z^{4}-z^{3}+z+1 .
$$

- It is actual $-z^{5} \cdot \Delta(z)$ for the Alexander polynomial $\Delta(z)$ of the bretzel knot given by (2, 3, 7).
- It is conceivable that for any non-trivial element $p \in \mathbb{Z}[\mathbb{Z}]$ with $M(p)>1$

$$
M(p) \geq M(L)=1.17628 \ldots
$$

holds.

- For a survey on Lehmer's problem we refer for instance to $[4,5,6,29]$.

Lemma

The Mahler measure $m(p)$ is the square root of the Fuglede-Kadison determinant of the operator $L^{2}(\mathbb{Z}) \rightarrow L^{2}(\mathbb{Z})$ given by multiplication with $p(z) \cdot \overline{p(z)}$.

Definition (Lehmer's constant of a group)

Define Lehmer's constant of a group G

$$
\Lambda^{w}(G) \in[1, \infty)
$$

to be the infimum of the set of Fuglede-Kadison determinants

$$
\operatorname{det}_{\mathcal{N}(G)}^{(2)}\left(r_{A}^{(2)}: L^{2}(G)^{r} \rightarrow L^{2}(G)^{r}\right)
$$

where A runs through all (r, r)-matrices with coefficients in $\mathbb{Z} G$ for all $r \geq 1$, for which $r_{A}^{(2)}: L^{2}(G)^{r} \rightarrow L^{2}(G)^{r}$ is a weak isomorphism and the Fuglede-Kadison determinant satisfies $\operatorname{det}_{\mathcal{N}(G)}^{(2)}\left(r_{A}^{(2)}\right)>1$.

- We can show, see Lück [26]

$$
\Lambda^{w}\left(\mathbb{Z}^{n}\right) \geq M(L)
$$

for all $n \geq 1$, provided that Lehmer's problem has a positive answer.

- We know $1 \leq \Lambda^{w}(G) \leq M(L)$ for torsionfree G.

Problem (Generalized Lehmer's Problem)

For which torsionfree groups G do we have

$$
1<\Lambda^{w}(G) ?
$$

Example (Weeks manifold)

There is a closed hyperbolic 3-manifold W, the so called Weeks manifold, which is the unique closed hyperbolic 3-manifold with smallest volume, see Gabai-Meyerhoff-Milley [12, Corollary 1.3]. Its volume is between 0,942 and 0,943 . Hence we get

$$
\Lambda^{w}(\pi) \leq \exp \left(\frac{1}{6 \pi} \cdot 0,943\right) \leq 1,06 .
$$

This implies $\wedge^{w}(\pi)<M(L)$.

References：

圁 G．Avramidi，B．Okun，and K．Schreve．
Mod p and torsion homology growth in nonpositive curvature． Invent．Math．，226（3）：711－723， 2021.

國 N．Bergeron and A．Venkatesh．
The asymptotic growth of torsion homology for arithmetic groups． J．Inst．Math．Jussieu，12（2）：391－447， 2013.

目 J．Boschheidgen and A．Jaikin－Zapirain．
Twisted L^{2}－Betti numbers of sofic groups． Preprint，arXiv：2201．03268［math．GR］， 2022.

D．Boyd，D．Lind，F．R．Villegas，and C．Deninger．
The many aspects of Mahler＇s measure．
Report about the workshop the many aspects of Mahler measure， April 2003，Birs，Banff， 2003.

四 D. W. Boyd.
Speculations concerning the range of Mahler's measure. Canad. Math. Bull., 24(4):453-469, 1981.

品 M. Carrizosa.
Survey on Lehmer problems.
São Paulo J. Math. Sci., 3(2):317-327, 2009.
S. Friedl and W. Lück.

Universal L^{2}-torsion, polytopes and applications to 3-manifolds. Proc. Lond. Math. Soc. (3), 114(6):1114-1151, 2017.
S. Friedl and W. Lück.
L^{2}-Euler characteristics and the Thurston norm.
Proc. Lond. Math. Soc. (3), 118(4):857-900, 2019.
S. Friedl and W. Lück.

The L^{2}-torsion function and the Thurston norm of 3-manifolds.
Comment. Math. Helv., 94(1):21-52, 2019.
S. Friedl, W. Lück, and S. Tillmann.

Groups and polytopes.
In Breadth in contemporary topology, volume 102 of Proc.
Sympos. Pure Math., pages 57-77. Amer. Math. Soc., Providence,
RI, 2019.
固 D. Gabai.
Foliations and the topology of 3-manifolds.
J. Differential Geom., 18(3):445-503, 1983.
D. Gabai, R. Meyerhoff, and P. Milley.

Minimum volume cusped hyperbolic three-manifolds.
J. Amer. Math. Soc., 22(4):1157-1215, 2009.
D. Gaboriau.

Invariants I^{2} de relations d'équivalence et de groupes.
Publ. Math. Inst. Hautes Études Sci., 95:93-150, 2002.

居 M．Gromov．
Volume and bounded cohomology．
Inst．Hautes Études Sci．Publ．Math．，56：5－99（1983）， 1982.
囯 M．Gromov．
Asymptotic invariants of infinite groups．
In Geometric group theory，Vol． 2 （Sussex，1991），pages 1－295．
Cambridge Univ．Press，Cambridge， 1993.
圊 H．Kammeyer．
A remark on torsion growth in homology and volume of 3－manifolds．
Preprint，arXiv：1802．09244［math．GR］， 2018.
D．H．Lehmer．
Factorization of certain cyclotomic functions．
Ann．of Math．（2），34（3）：461－479， 1933.

冨 P．Linnell and W．Lück．
Localization，Whitehead groups and the Atiyah conjecture．
Ann．K－Theory，3（1）：33－53， 2018.
目 Y．Liu．
Degree of L^{2}－Alexander torsion for 3－manifolds．
Invent．Math．，207（3）：981－1030， 2017.
E．Löh and M．Uschold．
L^{2}－Betti numbers and computability of reals．
Preprint，arXiv：2202．03159［math．GR］， 2022.
嗇 J．Lott and W．Lück．
L^{2}－topological invariants of 3－manifolds．
Invent．Math．，120（1）：15－60， 1995.
目 W．Lück．
L^{2}－torsion and 3－manifolds．
In Low－dimensional topology（Knoxville，TN，1992），pages 75－107． Internat．Press，Cambridge，MA， 1994.

目 W．Lück．
Approximating L^{2}－invariants and homology growth． Geom．Funct．Anal．，23（2）：622－663， 2013.
圊 W．Lück．
Approximating L^{2}－invariants by their classical counterparts． EMS Surv．Math．Sci．，3（2）：269－344， 2016.

圊 W．Lück．
Twisting I^{2}－invariants with finite－dimensional representations．
J．Topol．Anal．，10（4）：723－816， 2018.
圊 W．Lück．
Lehmer＇s problem for arbitrary groups．
J．Topol．Anal．，14（4）：901－932， 2022.
目 W．Lück，R．Sauer，and C．Wegner．
L^{2}－torsion，the measure－theoretic determinant conjecture，and uniform measure equivalence．
Journal of Topology and Analysis， 2 （2）：145－171， 2010.
S. Popa.

Deformation and rigidity for group actions and von Neumann algebras.
In International Congress of Mathematicians. Vol. I, pages 445-477. Eur. Math. Soc., Zürich, 2007.
C. Smyth.

The Mahler measure of algebraic numbers: a survey.
In Number theory and polynomials, volume 352 of London Math. Soc. Lecture Note Ser., pages 322-349. Cambridge Univ. Press, Cambridge, 2008.
W. P. Thurston.

A norm for the homology of 3-manifolds. Mem. Amer. Math. Soc., 59(339):i-vi and 99-130, 1986.

